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The unlimited unshocked compression of an ideal gas (the unlimited increase in the density and no shock waves) is considered 
when the gas is at rest inside a cylinder, a sphere [1], a tetrahedron [2] and a solid of revolution with a triangular generatrix 
[3, 4] at the initial instant of time. It is proved that the value of the optical thickness increases without limit and the asymptotic 
form of its increase for instants of time close to the instant when the gas collapses to a point is obtained. Estimates are made of 
the ratio of the optical thickness to the energy expended in the compression. © 2000 Elsevier Science Ltd. All rights reserved. 

The  p r o b l e m  of  obta ining the optical  thickness [5] is re la ted to the p rob lem of  the possibility of  using 
intense compress ion  processes  to initiate t he rmonuc lea r  synthesis (the optical  thickness must  reach a 
cer tain threshold  value).  

1. I N T R O D U C T I O N .  F O R M U L A T I O N  O F  T H E  P R O B L E M  

The  p roper t i e s  of  the well-known compress ion  processes  described previously in [1-4] are 
investigated,  but  we will hencefor th  only consider  those aspects which are necessary for  a qualitative 
analysis. 

In  the processes  in quest ion,  at the initial instant of  t ime the gas is at rest  in a cer tain volume,  which 
is f o rmed  by fixed walls and moving pistons. The  pistons begin to move  with zero velocity and, af ter  a 
finite t ime interval, compress  the gas to a point  or  a line. A shock wave only arises at the instant of  
collapse. 

We will assume the gas is uniform,  non-viscous and non-heat-conduct ing,  the compress ion  processes  
are adiabatic,  and the equa t ion  of  state is p = po(P/po) ~. In the case of  the compress ion  of  t e t rahedra  
and bodies  of  conical  shape we will assume 7 ~ (1, 2). Without  loss of  general i ty  we will assume the 
density and the velocity of  sound of  the gas at rest to be unity. 

Defini t ion of  the optical  thickness. We will in t roduce the function 

t (s, T) =  sr 

where  the point  T is s i tuated on the boundary  of  the region occupied by the gas. We will call the point  
S the optical  centre ,  its law of  mot ion  is chosen  so that  at each instant of  t ime the following quanti ty 
reaches  a m a x i m u m  

min H( S, T) (1.1) 
T 

and the optical  thickness at the instant o f  t ime x 

I(x) = max rain I pds 
s(x) T ST 

We will call the following quanti ty the optical  thickness along the direct ion n(llnll ¢ 0) 

tn ( X ) = min pds 
STIIn ~ST 
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where STIIn means that the section ST must be parallel to the vector n. Estimates for the optical thickness 
for fixed directions were obtained previously for coordinated compression of prisms in [5, 6]. 

In the multidimensional case (two or three spatial coordinates) the problem of finding the law of 
motion of the optical centre and the value of the optical thickness is extremely time consuming. It is 
therefore of  interest to obtain at least asymptotic estimates of the optical thickness for instants of time 
close to the instant of collapse. 

In the case of the compression of bodies of conical shape [3] the accurate solution of the equation 
for the velocity potential is only known for part of the compressed volume, and the equations of motion 
of the particles in this case can be solved in explicit form. However, the integration constants are found 
from the condition for the gas to be continuously next to the volume for which only a numerical solution 
is known. To carry out a qualitative analysis only that region is considered in which a powerful cumulative 
jet is formed and for which there is also an accurate solution). This simplification is justified by the fact 
that it is precisely in this jet that the greatest order of increase in the gas-dynamic quantities is observed. 
The assertion that any consideration of the remaining volume of gas does not change the estimates 
obtained has not been proved and is only used as a plausible hypothesis. Strictly speaking, in this case 
only lower limits are obtained, and the question of upper limits remains open. 

A brief algorithm for obtaining estimates for multidimensional processes. Instead of obtaining the 
law S(x), which makes the quantity (1.1) reach a maximum, we will specify the function S(x). We will 
then obtain the lower limits for the optical thickness value on the assumption that the law of motion 
of the optical centre was correctly guessed. We will then prove that the order of increase in the optical 
thickness cannot be greater than that which is observed for the specified law S(x). 

2. O N E - D I M E N S I O N A L  C O M P R E S S I O N  P R O C E S S E S  

We can easily obtain the order of increase in the optical thickness for one-dimensional 
compression processes in which the gas-dynamic quantities depend on one self-similar variable. The 
degrees of cumulation of the gas-dynamic quantities for the compression of a cylinder and a sphere 
are [1] 

r ~ (-x) n, p - (_~)-~n p ~ (_x)-,~ 

~ =  
2 (2.1) 

v ( y - 1 ) + 2  

(v = 2 for a cylinder, v = 3 for a sphere and r is the distance to the centre of the sphere or the axis of 
symmetry of the cylinder). It follows from the definition of the optical thickness and formulae (2.1) 
that 

! ~ pr ~ (-x) "v 

1 4 
n 2 = - - -  n 3 = _ 

y 3y - l 

Remark. It is necessary to refine formulae (2.1). For a fixed gas particle we have 

r - R ( - x )  rl, p ~ D ( - x )  - w l ,  R,  D -- cons t  

where 0 <~ R ~< Rmax. If r(T) --- 0 (the particle is on the axis or at the centre of symmetry), we have p --- P0- 
Hence, it can be seen that the compression of the gas is extremely non-uniform. It can be shown that the 
estimate of the optical thickness value does not change when the non-uniformity of the compression is taken into 
account. 

3. S E L F - S I M I L A R  C O M P R E S S I O N  OF A T E T R A H E D R O N  

At the initial instant of time x = - 1  the gas is at rest inside a tetrahedron A B C O  (Fig. 1), the face A B C  
is the initial position of the compressing piston, and the remaining faces are fixed non-penetrable walls. 
The geometrical parameters of the tetrahedron the defined by the value of the adiabatic exponent (the 
"matched" case). We will introduce the following notation 
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Fig. 1. 

/ ~ + 1  , h = /  "/+1 
g='~3-y  ~ ' (2 -  y - ~ -  y) 

The triangles ABC, AOC and BOC lie in the planes x2 = - 1 ,  xl = gx2 and hxl = gx3 respectively. The 
equation of the edge CO has the form xl = gx2 = (g/h)x3. The configuration of the compressed volume 
at a certain instant of time is shown in Fig. 1. The tetrahedron GHLO contains unperturbed gas. In 
the regions EFMGHL, DGEKLM and KLMN the gas flows are simple, double and triple self-similar 
waves. At the final instant of time (x = 0) the gas is compressed to a point O. the exact solution of the 
problem was deriw:d earlier in [2]. (The compressed volume in Fig. 1 is confined, for clarity, along the 
Ox3 axis, and the section OC may be much longer than the sectionAB, since the length of OC increases 
without limit as ~/--~ 2.) 

The trajectories of the particles. We will introduce the notation x = (xl, x2, x3) T, u = (ul, u2, u3) r for 
the radius vector of a gas particle and its velocity vector. In a triple wave the values of the velocity vector 
components define the value of the velocity of sound 

c = 1 + %u (3.1) 

(here we have in mind the product of the row vector cu = tr I (g, 1, h) and the column vector u, cr = 
1 2(~1-1)- ). The gas flow is defined by the implicit formulae 

x / x  = ui + ec~c/Oui 

which can be written in the matrix form 

x/x + x ° = Au (3.2) 

where x ° is a column vector andA is a 3 × 3 matrix with constant coefficients. The matrixA is similar 
to the diagonal matrix B, i.e. a non-degenerate matrix T exists such that B = T-SAT. We can take the 
following as the transforming matrix 

T =  I h -I 

0 1 

The diagonal elements of matrix B are denoted by bl, b2 and b 3 (those are the eigenvalues of 
matrix A). 

We will change to a new system of coordinates Oyly2y 3, by making the linear replacement y = T-~x. 
Relation (3.2) then takes the form 
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y/x + f = Bv (3.3) 

_dY yO ( 0,yO 0)T=T-Ix0 
V -- "~-~-, = Yl 2,Y3 

The trajectories of the particles are found from the system 

dYi ---!(Y/+y°'~ i=,,2,3 (3.4) 
d't bi ~, "c J 

b l = b 2 = l ,  b3 = y + l  , yO=yO=0,  yO= h 
2(2 - ~/) 

The general solution of system (3.4) has the form 

Yi "-ki't, ki = Yi('to) i =  1,2; Y3 = Y3('%)-k~° (-x)  b +k~ (3.5) 
,to , (_,to )b 

yO 1 
k = b3 _ ! '  b = ~'3 e (0 ,  I), x 0 = cons t  

It is easy to verify that the Oy3 axis coincides with the straight line CO. (The origin of coordinates 
remains at the point O while the point C = (-g, -1, --h) in the new system has the coordinates 
(0, 0,-h).) 

When carrying out the qualitative analysis we will take into account only those parts which are in 
the region of the triple wave. (It will be shown that a consideration of the remaining volume of gas has 
no effect on the estimates obtained). 

Estimate of  the density. Formula (3.1) has a more compact form in the system of coordinates OYlY2Y 3. 
We will introduce the self-similar variables ~i -~" Yi/'t, then 

c = l + c u T v  = l + cuv 3 = c I + crl'q3 (3.6) 

I I  3 - T  c t=l+cubh,  
c v = "(T+ l ) (2_y) ,  cll = ~ b  

Hence we obtain the following estimate for the density 

P = C a = D( '03)TI~,  DO]3)  = (c l /113 + c n )  a 

O< D! <~ D(n3)~ < Dg, Dt,Dg =const 
(3.7) 

The lower limit for the optical thickness value. 

Assertion 1. At the instant "to we will take two particles, whose coordinates will be denoted by 
(YH, Y12, Y13) and Y21, Y22, Y23). If Yli('to) = Y2i('to), then when "t > "to we will have the equality 
Yli( ' t)  = Y2/('t)- 

The proof is obvious. 
Consider a certain instant of time "t0. In the region of the triple wave we will distinguish an individual 

volume of gas having the form of a cube AI .. .  As (Fig. 2), in which the distance between the parallel 
faces is r0, the faces A 1 A 2 A 3 A  4 and A 5 A 6 A 7 A  s a r e  parallel to the OytY2 the faces A I A s A s A  4 and 
AzA6A7A s are parallel to the Oyly 3 plane and the faces A1AsA6A 2 and AaAsA7A 3 are parallel to the 
Oy2y  3 plane. By formulae (3.5) and Assertion 1, during compression this volume will take the form of 
a parallelepiped where the minimum distance between two opposite faces will be xro/'t0, where r0, "t0 = 
const. By formulae (3.5) the face A5A6A7A s moves in accordance with the relation 

y3(,) = f(,) = Y3 ('to)- ~o (_x)b +/a 
(-Zo) b 
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Then, for the volume considered 

y3(x) <f(x), ~3(x) > fl(x)/x 

it follows from estimate (3.7) that in this volume 

p ~> R0(-X) °(b-n), R 0 = const > 0 (3.8) 

We will take as the optical centre the centre of the parallelepiped, and the distance from the optical 
centre to the boundary of the volume 

r ~> r0(2x0)-nx 

At the boundary of the paraUelepiped we take the point T. The following inequality holds 

]sTPdS>~ R,o(-X) I:l(b-I) r0 ,~ 
2~ 0 

Hence we obtain the lower limit for the optical thickness value 

l ~>/~ (-x)"' 

= R°rg- = const > 0, n t = t ~ ( b - l ) + l  = T - 5  < -1 
2x o ~/+ 1 

(3.9) 

Using the estimate of the density (3.8) it can be shown that the value of the optical thickness along 
the Oy3 axis will be O(x-2), x---~0 (for the given choice of the relation S(x)). 

Upper  limits for the value of the optical thickness. We will prove that, in the region of a triple wave 
in a direction perpendicular to the Oy3, the greatest possible order of growth of the optical thickness 
is O(-z)  "t . 

Remark. In the region KLMN consider the subregion 

Y3 > (h + 2g)x, g = const > 0 (3.10) 

which is adjacent to the boundary of the triple wave. It follows from relation (3.6) that a constant 
m > 0 exists such th~tt for anyyl, Y2,y3 and x ify 3 > (h + 2e)x, then 

P0'I, Y2, Y3, x) = c°(Yl, Y2, Y3, x) < m 

since "q3 --- Y3/x < h + 2~. Hence, the optical centre cannot be situated in region (3.10). 

Consider a section of the compressed volume by a plane parallel to the Oyly 2 plane, which we will 
denote by P. At a fixed instant of time the gas density in this section is constant; denote its value by p. 

Assertion 2. Suppose r, n is the greatest radius of the circle in the section P (i.e. all points inside the 
circle belong to P). Then 
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l = max min H(S, T) = pr m 
S~P TE~)P 

(aP - is the boundary of the section). 

Proof. If a circle exists having the above-mentioned properties, it is obvious that l i> prin. We will assume that 
we can choose a point So so that 

rain H(S,T) > pr m 
T~o~P 

Consider a circle of radius rm with centre at the point So. By the definition ofrm, this circle will touch the boundary 
of the section at a certain point To and then H(So, To) = prin. We have obtained a contradiction. 

Suppose the law of motion of the optical centre is 

S(x) = (Yt (x), Y2 (x), z(x)), z(x) = -q(x)(-x)  h < (h + 2g)x 

We will introduce the following notation: P(x) is a section parallel to the OylY2 plane passing through 
the point S(x) and rm(X) is the greatest radius of the circle in the section P(x). The following relations 
hold 

le(x) = min H(S(x),T) <~ - r l ( x ) ' gOg(q(x ) ( - x )  b - I ) °  = 
TeaP('¢) 

= -Dgr  I (x)q a (x)(-x) n' , r I (x) = -r,n (x) / x 

If E 1 - -  const > 0 exists such that q(x) > el, the value of rl(1: ) is bounded. 
We will prove that if lim~_~0q(x) = 0, then lim~_~0rl(x)q(x) = 0. We will then prove that, in a direction 

perpendicular to the Oz axis, the greatest possible order of increase in the optical thickness is O((-x)"t). 
Consider the following moving volume (which we will denote by D0(x)): a cone, the base of which is 

a circle of radius rm(X) with centre at the point S(x), while the vertex of the cone is the point (0, 0, z0), 
where z0 = hx. We will denote by f~(x) the truncated cone obtained from DO(x) by introducing a plane 
parallel to the Oy]y2 plane passing through the point (0, 0, z]), where zl = (h + e)x. The mass of gas 
in the region f~(x) is 

m(¢) = ~S pdYldy2dY3 = l~ml' ml = -~  x)dY3' 
~('c) 

R(Y3,¢) = rra(x) (Y3 - Zo) 
Z -- Z 0 

We will define 

= D" Y3 ~ ( rm(X)(y3_zo)  dY3 <~ m| m2 ' "7) L -z0 

The value ofmz is bounded for any x. Further 

2 

m2 =Dr Z -  Zo 

2z I 

= D,(_x) 2-° t / 3 

z \Y3 J 

Note that the following inequalities are satisfied fory3 ~ [z,.zl] 

h zo_l~< z o _ l <  
Y3 Zl h + 

- 1 < 0  
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Hence it follows that the quantity 

Z! 
m3 = (-'C) 2-or rl 2 ( ' t)( - z ) -2  1 (-Y3)~+2 dy 3 = 

= (-x)  2-° r~ 2 (x)(-z) -2 ~ ((-z) "÷3 - (-z,),~+3) = 

is bounded. Similarly 

~_!_~ < h+E 

z h + 2 e  
<1 

Consequently, the ,quantity 

m4 = (_X)2-o li2 (Z)(_Z)O+, = (_Z)2-o+t~o+,) rt2 (X)qO+l ('t) (3.11) 

is bounded. The e~.ponent of (-x) in formula (3.11) is equal to zero. Hence, we obtain that for any x 
2 ar+l (tr+l)/2 the quantity rl (x)q (x) and, of course, the quantity rl( t )q (~) also, are bounded. 

Taking into account the relations 

~ + 1  I ~ / + 1 <  2 

2 2 y - I  y - !  
- - t~  

we conclude that 

lim r I ('Oqa (x) = 0 
"t---~0 

The effect of the double-wave region on the optical thickness value. We will first assume that the optical 
centre lies in the triple-wave region. We will denote by r2 the distance from the chosen gas particle to the 
origin of coordinates. In the double-wave region the following asymptotic relation [2] is satisfied as x--->0 

3 - 7  
r 2 ~(- 'c) -np, np= T +1 

In order that the double-wave region should have an effect on the optical thickness value in a direction 
perpendicular to the Oy 3 axis, it is necessary that the quantity r2/z should be bounded (here z is the Y3 
coordinate of the point S(x)). We will assume that this requirement is satisfied. We will obtain an upper 
limit for the optic~l thickness value in a direction parallel to the Oy3 axis. 

We will assume that the relation z ~ (-x) -~p holds as x ~ 0. Then 

"q3 -" z / x  - (-x) -"~-~, p - c~(-x) C-"p-')° 

We obtain the foUowing estimate for the optical thickness 

l ~ pz ~ c~(-x) ¢-n'-I)a-% = c~(-'c) -I 

If we assume that the optical centre lies in the double-wave region, then proceeding in a similar way 
we obtain that the greatest order of growth of the optical thickness for directions parallel to the A B O  
plane is O((-x)-1). 

Hence, in the case of the compression of a tetrahedron we have the following estimate for the optical 
thickness 

l = L(x ) ( -x )  ~' , 0 < I~ ~ L(~) ~ L2 

/.1, L 2 = c o n s t , - 2  < n t < -1  

(3.12) 
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4. T H E  P R O C E S S  OF C O N I C A L  C O M P R E S S I O N  

At the initial instant of  time z = -1  the gas is inside the solid of revolution, the generatrix of  which is 
a right-angle triangleABO (Fig. 3), where the angleABO is -rr/2. The gas flow is symmetrical about the 
Oz axis where the "peripheral" component of the velocity is zero. We will consider only the "matched" 
case, when the adiabatic exponent defines the initial geometry of the compressed volume. We will denote 
the value of the angle OAB by a, where [4] tg2cx = (2 - ~/)/(T + 1). The l ineABO is the initial position 
of  the compressing piston, which at a certain instant of  time x ~ (-1,0) takes the f o rmDEFHO.  At this 
time there is unperturbed gas in the triangle GHO. We will choose the length of  the section BO to be 
equal to unity; hence, at the instant z = 0 the sonic perturbation arrives at the point O, and in this time 
all the gas is compressed to the point O. The velocity potential was obtained in [3, 4] in the class of 
self-similar solutions 

eO(z,r,x) = (x+ 1)K-  xtF(~,~), K = const > 0 

(the self-similar variables are ~ = z/x, ~ = r/x). The velocity vector components ul = @z = -WO 
u2 = ~,  = -Wn and the square of the velocity of sound is 

c 2 = (~/- l ) ( V -  ~V~ - rlVn - (V ~ + ~F~)/2) (4.1) 

In the region D E G  (EG is a characteristic, Fig. 3) we construct the exact solution 

• 
4 ~ , + x  

~+~0 = gtcosX, rl = IxsinX 

~0 = ((¥ - 1)A(0)(1 - 2A(0))) - ~  - (sin a)  -I 

where V- and k are polar coordinates. 
We will solve the boundary-value problem numerically in the region E F H G  with data on the 

characteristics E G  and GH. Henceforth we will only take into account the region DEG. 
We will represent the function W in the form 

~F= (4 2 + rl2 ) a / a r c t g ~ ) - 2 ( ( ~ - ~ o ) 2  +rl 2) 

and we will calculate its partial derivatives 

~F~ = ( 2 A -  1 '~ - - -~  rl + ~o, ~Frl = (2A - I)~ + - ~ ' ~  (4.2) 

We obtain the trajectories of the particles as a function of  x, xt~ zo and ro (the time, the initial instant 
of  time and the initial position). From (4.2) we obtain the equations 

$ I" 

A .~ 6 0 

Fig. 3. 

Z 
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_ _  d r  r 
dz  = bz  + (b  - l)~o, - -  = - (4.3) 
dx  x dx  x 

solving which we obtain 

z ( x )  = C I ( - x )  t' - x ~ 0 ,  r = C2~,  C n, C 2 = e o n s t  ( 4 . 4 )  

The integration constants are found from the condition for the gas to be continuously next to the region 
E F H G ,  for which only a numerical solution is known. 

An estimate of the density and the optical thickness. Using relations (4.1) and (4.3) we obtain a 
representation for the square of the velocity of sound 

c2 = ( y _  I(A~2 +arl2 _ ! ~ 2  + b ~ 2  _ l b 2 ~ 2 ) = B ( 2 L ) ~ 2  

B(x)  = A(x)  tg 2 x + A(X) + b - =t = 
3(y 1)(2 Y) 

(7 + 1) 2 > 0 z 

The velocity of sound and the density depend solely on the variable 

p(~, 11) = c a = (~.fl)o (4.5) 

The formulae for the gas particle trajectories (4.4) and the estimate for the density (4.5) are similar 
to the corresponding formulae (3.5) and (3.7). Further, the procedure for obtaining asymptotic estimates 
repeats practically word for word the method described in the section on the compression of a 
tetrahedron. 

Hence, in the case of the compression of bodies of conical shape the optical thickness is subject to 
the limit (3.12); here it is assumed that this limit does not change if we consider the part of the 
compressed volume for which only a numerical solution is known. 

Similar limits were obtained previously for the compression of a cylinder, a sphere and also for the 
self-similar and non-self-similar compression of a prism [5, 6], which differ in the value of the exponent 
of - ~  (for different types of compression, generally speaking, there are different values of n~). Further, 
instead of (3.12) we, will use the abbreviated form 

l ~ (-x)"~ (4.6) 

When 1 < - / <  2 the following inequalities are satisfied 

= < o n t = n c < n 3 < n 2 < n p  ~/+1 

where nt, n o  n3, n2 and n.  are the exponents in formula (4.6) corresponding to the compression of a 
tetrahedron, a cone.,, a spl~ere, a cylinder and a prism. 

5. C O M P A R I S O N  OF THE E N E R G Y  I N P U T  TO OBTAIN L A R G E  
O P T I C A L  T H I C K N E S S  VALUES 

In the previous section we showed that the compression of a cone and of a tetrahedron corresponds 
to the highest order of growth of the optical thickness value (l). However, the order of the energy input 
(E) for this compression is also greater than for the other types of compression considered, and hence 
it is interesting to obtain an estimate for the value of I /E,  which will represent how economic it is to 
obtain large optical thickness values. 

Using the estimates obtained previously [1] for the energy inputs for comoressing a cylinder and a 
--4('/ 1)7("/+1) sphere E - (-x) -~(v-0, -q = 2/[v(~/- 1) + 2], a prism [2, 6] E - (-x) - , and a tetrahedron 

:-6(V 1)7(3,+1) and a cone [3,7] E .- (-x) - , we made a comparison of the exponents a~ in the formula 

l / E - (-I:) "v 

2y - 3 3T - 5 "~¥ - ! 1 57 - 7 
a 2 = , a 3 -- 2 , a c = a t --- - -  ap = - -  

T 3T -1 y + l  ' y + l  
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T h e  subscript  v = 2, 3, c, t, and p cor responds  to the compress ion  of  a cylinder, a sphere,  a cone, a 
t e t r ahed ron  and a prism, 

The  smal ler  the value of  a~ the m o r e  economica l  is the compress ion.  The  following inequali t ies hold 

a2>a3 for  y < 3 ,  

a 2 > a  c f o r y < l +  2 ~ ' 5 ,  

Up>a2 

a 3 > a ~ = a t  for  y <7/5 ,  

a p > a c = a ~  for  y < 2 .  

Hence ,  the compress ion  o f  a cone  and a t e t r ahedron  is more  economic  ( f rom the point  of  view of  
obta ining large optical  thickness values)  only for  cer tain ranges  of  values  of  the adiabat ic  exponent  
c o m p a r e d  with the compress ion  of  a cylinder and a sphere.  

The  l imited na ture  of  the es t imates  based solely on asymptot ic  fo rmulae  should be noted,  since the 
asymptot ic  fo rm is reached  quite slowly [8, 9]. 
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